EEOS601

UMASS/Online
Introduction to Probability
& Applied Statistics
Handout 11, Week 8

Tu 7/19/11-M 7/25/11
Revised: 3/20/11

WEEK 8: CHAPTER 9 & CHAPTER 14, TwO
SAMPLE PROBLEMS (1 OF 2): INDEPENDENT T,

TwoO

-SAMPLE BINOMIAL, F, AND WILCOXON
RANK SUM TESTS

TABLE OF CONTENTS
Page:
LISt Of FIQUIES. . .ot e e e e 2
LISt Of TS, . o oo 2
LISt Of ML fIlES. ot 2
A S NN, . . ot e e e e 3
Required reading. . . . . ..ot e 3
Understanding by Design TEMPIALES. . . . . . ..ot e e e e e e 3
Understanding By Design Stage | — Desired ResultsWeek 8. . ... ... i e 3
Understanding by Design Stage || — Assessment Evidence Week 8 (7/19-7/25M).. ... ... i, 3
I OAUCH ON. . .o 4
The Independent SampPIESt TESE. . . . ..ottt e e e e e 5
The DOX PlOL.. . .o 6
Confidence Limits for the Differencein Means. . . . .. ... ot e e e 6
R AT = o T A (= P 7
WilcoXOn' S RaNK SUM TeSE. . . . . .ottt e e e e e e e e e e e e e 7
The Behrens-Fisher problem revisited for Wilcoxon'srank-sumtest............................ 9
Testing — The FHest. . . . oo e 10
The two-sample binomial teSt. . . . . ... o 11
CaSE SHUMIES. . . oottt 11
Case StUAY 0.2, 0., .o 11
CaSE StUAY 9.2, 2. . o it 13
Case StUAY 9.3, .. . . ot e 14
Case StUAY 0.4, L. . . 15
CaSE StUAY 9.4, 2., . o o 15
Case StUAY 0.5, .. . .ot e e 15
Case StUAY 0.5, 2. 16
Case StUAY 0.5.3.. . o e e 16
Case Study 14.3.4 Baseball GamelLength. . ... ... 17
Chapter OULINES. . . . ..o e e e e e 18



EEOS 601
Prob. & Applied Statistics
Week 8, P. 2 of 47

Annotated outline (with Matlab scripts) for Larsen & Marx Chapter 9. .. ... ... ... . .. 18
Annotated Outline (with Matlab scripts) for Larsen & Marx Chapter 14. . ........ ... ... 26
R ENCES. . . o o 45
IOEX ..« e 46

List of Figures

Figure 1. Boxplots for the Case Study 9.2.1 data with Twain left and Snodgrass right. There is no indication of unequal

SPPBAM.. . . oot e 12
Figure 2. Student’s t distribution for 16 df showing the two tailed critical values for a=0.01. Since 3.88 is greater than

2.9208, reject the null hypothesisat the a=0.01 level.. . . ... .. i e 12
Figure 3. Boxplots for the nonconfined (left) and solitary confinement (right) alphawaves.. .. ..................... 14

Figure 4. The F distribution with 9 and 9 df. In order to reject the null hypothesis of equal variances, an F ratio of 0.25 or
4.03 would have to be observed. The observed F ratio of 1.7 is well within the two alpha = 0.05 critical values.

........................................................................................ 15
Figure 5. Boxplots for enamel spectropenetration gradients for males (left) and females (right).. . .................. 16
Figure 6. Boxplots for glacial flow rates for three-year photographs (left) and five-year photographs (right).. ......... 16
Figure 7. Boxplots for average game length for American (left) and National (right) leagueteams.. ... .............. 17
List of Tables
List of m.files
LIMCS000201 _AtN. . . .ottt 18
LIMGCS090202_Ath. . . . oottt 19
function [Dt,df,pvalue,Cl,sp]=student2group(Xn,Y n,Xmean,Y mean,Xstd,Ystd,alpha). . .. ............ ... ... .... 20
LM CS000B0L AN, . . .ottt e 20
LIMCSOO040L_Ath. . . .ottt 22
function [D,phat,z,pvalue,Cl,obsp]=binom2sample(x,n,y.m,alpha). . . . . ... ... .. . 22
LIMCSO00402 _AtN. . . .ottt et e 23
LIMCSOO050L_AEN. . . .ottt e e e 23
function [D,Studp,t,df,RandPermP,ClpD,Clr]=randp2sample(X,Y ,Trials,UseT,apha). .......... ... ... ... ..... 24
LM CSO00502 _AtN. . . . oottt e e 26
LIMCSOO0503 AtN. . . . oottt et 26
LMCSIA0200 AN, . . .ottt 26
LIMCSIA0202 AN, . . . oottt e e 28
LIMCSIA0203 AtN. . . .ottt e e 29
LMCSIA0B0L AN, . . .ottt et 31
LIMCSLA0B02_AtN. . . .ottt e e 32
LMCSIA03B03 AN, . . .ottt 34
LIMCSIA0B04 AN, . . .ottt e 36
function [pvalue,W,U,Wstar]=Wilcoxranksum(X,Y ,EX). . . . ..ottt e e 37
function pexuptail=W ilcoxrsexact(n,m,W,ranks);. . . . . ...t 38
fUNCion [T, R,INAITtIES(A ). « . ot ottt e e e e e e e e 41
LIMCSIA0A0L_AEN. . . .ottt e e e 42

LM CSLA050L_AtN. . . .ottt 43



EEOS 601
Prob. & Applied Statistics
Week 8, P. 3 0f 47

Assignment

Required reading

! Larsen, R. J. and M. L. Marx. 2006. An introduction to mathematical statistics and its
applications, 4" edition. Prentice Hall, Upper Saddle River, NJ. 920 pp.
' Read Chapter 9, all
' Read Chapter 14, Section 14.3

Understanding by Design Templates

Under standing By Design Stage | — Desired ResultsWeek 8
LM Chapter 9 (Independent) Two-sample problems
G Edtablished Goals

. Come to know the Student’st, Welch’st, Wilcoxon rank sum and permutation tests
based on differencein mean and t ratios..

U Under stand

. The major assumption of the independent testsis equal spread and that assumption

appliesto the Wilcoxon rank sum and permutation test
Q Essential Questions

. When do you use the independent samplest test and when the paired t test?

. What are the advantages of pairing?

. What assumptions matter for these tests?

K Sudents will know how to define (in words or equations)

. box plot, confidence limit for the difference in means, Levene’' stest, Mann-Whitney U

test, pooled variance, power efficiency, Student’ st test, Satter thwaite df
approximation, Welch’st test, Wilcoxon rank sum test
S Students will be able to
. Analyze independent two-sample problems with Matlab
. Recognize when the assumptions of the independent samplest test have been violated
. Find and interpret the confidence limits for differences between means
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Under standing by Design Stage || — Assessment Evidence Week 8 (7/19-7/25 M)
Chapter 9 (part) and Chapter (14) part

. Post in the discussion section by 7/27 W 10 PM by W
. Run Rajeev Raizada s Matlab interactive 2-sampl e t-test. m smulation & note
the effects of outliers, post a 1-paragraph summary of your conclusions
. http://www.dartmouth.edu/~r aj/intr o-stats.html
. http://www.dar tmouth.edu/~raj/M atlab/Intro_statsinteractiv

e two sample t_test.m
. HW 6 Problems due Wednesday 7/27/11 W 10 PM

. Basic problems (4 problems 10 points)
. Problem 9.2.1 Alcoholic Authors. Use a box plot and decide whether an
independent samplest test or Welch'st test is appropriate. Use Case
Study 9.2.1 asamodel.

. Problem 9.4.2 using Case Studies 9.4.1 or 9.4.2 as a model

. Problem 9.5.2 using Case Study 9.5.1 as a model

. Problem 14.3.10 analyze Case Study 9.3.1 data using Wilcoxon’s
ranksum test using Case Study 14.3.4 as amodel

. Advanced problems (2.5 points each)

. Problem 1. Perform an independent samples and Welch’st test on the
Case Study 9.3.1 alpha wave data. Note any differences.

. Problem 2 Gallagher’ s exactptratio.m will Apply the exactptratio.m test
to case study 9.2.1 data and compare the p value with the independent
samplest test.

. Master problems (1 only, 5 points) unequalvariances.m is Gallagher’s program

to generate random data with known differences in mean, standard deviation,
skewness and kurtosis. Use this program to test whether the independent
samplest test isrobust to violations of equal variance. How isthe result affected
by different sample sizes. Write a brief report on your exploration of the
program and its results.

| ntr oduction

In Weeks 8 & 9, we'll cover two sample problems. In Week 8, we'll cover the independent
samplest test (Larsen & Marx 2006, Chapter 9) and the Wilcoxon rank sum test which isthe
nonparametric analogue of the independent samplest test. Nonparametric tests are covered in
Chapter 14 in Larsen & Marx. Alsoin Week 8, we'll introduce the Welch’st test which is not
covered in Larsen & Marx (2006), but Welch’ stest is appropriate when the two groups have
different variances. A final class of two-sample tests will be based on random permutations.
We'll either randomly permute or find all the permutations of two samples and test for
differences in means between every pair of permutations. If al of the permutations have been
identified, the test will be exact. Aswe'll see with Gallagher’s Matlab program

unequal variances.m, random permutations don’t solve perhaps the major problem for thet test:
unequal variances between the groups.


http://www.dartmouth.edu/~raj/intro-stats.html
http://www.dartmouth.edu/~raj/Matlab/Intro_stats/interactive_two_sample_t_test.m
http://www.dartmouth.edu/~raj/Matlab/Intro_stats/interactive_two_sample_t_test.m
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In Week 9, we'll continue with the two sample tests starting with the paired t test, which Larsen
& Marx (2006) cover in Chapter 13. Also in Week 9, we'll cover the nonparametric equivalents
of the paired t test, which are the Wilcoxon signed rank test and Fisher’ssign test.

The Independent Samplest Test

Theorem 9.2.1 provides the equations for the pooled estimate of the standard error for the
difference in two means. There are three key assumptions for the use of the independent sample
t test: 1) equal means, 2) both samples normally distributed, and 3) the errors are independently
distributed. The best way to assess whether two samples have equal spread or variance isto use a
box plot. Thereisaformal test, called Levene' stest, for testing whether the equal

THEOREM 9.2.1. Let X, X;,..., X, be a random sample of size n from a nor-
mal distribution with mean uy and standard deviation o and let Y, Y,,..., Y,
be an independent random sample of size m from a normal distribution with
mean py and standard deviation o. Let $% and S% be the two corresponding
sample variances, and Sf,, the pooled variance, where

n m

(n = 1)S% + (m - 1)8} E(X.-—)?]2+ E(K_p)z

i=1 i=1

SZ
i n+m-—2 n+m-2

Then
X -Y = (px — uy)
L
PNm m
has a Student ¢ distribution with n + m — 2 degrees of freedom.,

Tm m-2 =

S

Theorem 9.2.2 is asimple extension of Theorem 9.2.1 that definesthe t statistic used to test for
differences in the meansin two samples.

Theorem 9.2.2. Letxy, x2,..., Xy and ¥y, ¥2..... ¥ be independent random samples from
normal distributions with means px and py, respectively, and with the same standard
deviation o. Let

. x—-3

oy

Spyf =
V n

a. Totest Hy: ux = py versus Hy: puy > py at the a level of significance, reject H, if
b2ty ndin=2-

b. To test Hyp: jux = juy versus Hy: ey < py at the @ level of significance, reject Hy if

=< _ru.ll =2

T

m

+

c. Totest Hyp: wy = py versus Hy: uy # py at the o« level of significance, reject Fiy if 1
is either (1) < —ty/2.n4m—2 O (2) = ty/2.n4m—2-
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Thebox plot

The boxplot was invented by John Tukey as a quick way to plot data. The centerline of the
boxplot is the median. The box itself contains, approximately, the interquartile range. In
actuality, there are about 7 different ways to find estimates of the 1% and 3" quartiles, but Tukey
wanted a quick method. So, Tukey’ s boxes are found by finding the median first and then
finding the median of the lower half and the median of the upper half of the data. These will be
close to but not necessarily identical to the quartiles. The whiskers on the box plots extend to
real data pointsthat are within 1.5 interquartile ranges from the end of the box. Then there are
outliers and extreme outliers marked by real datathat are between 1.5 and 3 interquartile ranges
and extreme outliers that are more than 3 interquartile ranges from the end of the box.

There are boxplots that are used in K-12 texts that use a different plotting convention. The
whiskers extend to include all of the data. Thisisthe boxplot that istested in virtualy every
Massachusetts MCAS exam.

Matlab produces a notched boxplot. The notches are just a crude approximation for a confidence
interval for the median. | don’t recommend the use of notched boxplots, but Matlab often
produces them as the default boxplot option in some routines such as ANOVA's.

Confidence Limitsfor the Differencein M eans

Theorem 9.5.1 provides the equation to calcul ate the confidence interval for two means. The
confidence interval is estimated from the pooled standard deviation shown above in Theorem
9.2.1 and at statistic with n+m-2 df.

Theorem9.5.1. Letx), x3,..., x,and Y12 V2oo.., ¥ be independent random samples drawn

[rom normal distributions with means px and wy, respectively, and with the same standard
f.ievmnm;, a. Let s, denote the data’s pooled standard deviation, A 100(1 — @)% confidence
interval for iy — py is given by

X v ! 5 "H 1 + ! = T IJ' 1 1
i i A= 2.n+m=-2 i e, S A By . : 8 — i
/2. n+m » . = ¥y + laf2 n+m=2 * § pv = -+ m
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Welch'st test

The independent samplest test should notbe  |**# Kot aEs uiations with Unequal Spreads

used if the spread in the two groupsiis bbbt ety o oot et
marked|y d|fferent’ espec|a| |y if the Sarnp|e S::)er gg :h ﬁ‘l‘?#:fiﬁzfﬁﬁ":f; ;:::ialiun. The result is a different formula for the standard
sizes are unequal. There are two approaches

that are used if the spreads are unequal. If the —

group with the larger spread has alarger ( BT = S )
mean than a square root or logarithmic

transformation can often equalize the < Res e, Tk WA 1 Ao et o T i
variance. If these transformations don’t work, with 2y degres of eedom, Known as ettty spentrations
others include the inverse transform can be

used. If thereis till unequal spread, then the aty = —(Ew@-Tr

Welch’st test should be used. The Welch'st v SREE . A

test is not based on the assumption of equal

where
P

variances in the group. A new formulafor the SE(F,) = ! _ 5
standard error of the difference in mean is S e ahd SE(Yg) =< 77

based on the pair of different standard
deviations and their sample sizes as shown in
the box at the right from Ramsey & Schafer (2002). The exact sampling distribution of thist
test are not known but an empirical approach to fitting p values has shown that if the degrees of
freedom are reduced in proportion to the differencesin variance, approximate p values can be
attained. The df equation is called Satterthwaite’ s approximation, and it convergesto the
conventional Student’st df (n+m-2) when the variances in the two groupsare equal. The
problem of testing for differences in means with different variancesis called the Behrens-Fisher
problem and is one of the most vexing in statistics.

Matlab’ s ttest2.m cal culates the independent samplest test as the default, but if method is
specified as ‘unequal,” then Welch’'st test is calculated.

Wilcoxon’s Rank Sum Test

Salsburg (2001) devotes Chapter 16 of hisbook on landmark statistical developments to the
work of Frank Wilcoxon. The chapter istitled ‘ Doing away with parameters.” Wilcoxon was a
chemist, not a statistician, working at American Cyanimid. He was applying Student’ st tests for
equality of means and was disturbed when single observations would drastically affect the
results:

“ But Wilcoxon was concerned about what often appeared to be a failure of these
methods [ Sudent’ st tests and F tests]. He might run a series of experiments
where it was obvious to him that treatments differed in effect. Sometimes the t-
tests would declare significance, and sometimes they would not. It often happens,
when running an experiment in chemical engineering, that the chemical reactor,
wher e the reaction takes place, is not sufficiently warmed up at the beginning of
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the sequence of experimental trials. It may happen that a particular enzyme
beginsto vary in its ability to react. The result is an experimental value that
appearsto be wrong. it is often a number that is much too large or much too
small. Sometimes, it is possible to identify the cause of this outlying resuilt.
Sometimes, the result is an outlier, differing drastically fromall the other results,
but there is no obvious reason for this ...” (Salsburg 2001, p. 161-162)

Wilcoxon devel oped a procedure resistant to outliers which involved converting the data to
ranks. If there were n cases for sample A and m cases for sample B, the A and B cases would be
combined and the data converted to integers ranging from 1 to n+m. If there were ties, the tied
cases would be assigned average ranks. The test statistic for Wilcoxon’srank sum test issmply
the sum of the ranksin the smaller group.

Wilcoxon worked out, using combinations, the probability of observing different rank sum
statistics for groups of differing size. He submitted his results to Biometrics, assuming that a
reviewer would point out that a statistician had already invented such atest. But, he was the first
to develop a nonparametric procedure based on ranks. In 1947, Mann & Whitney proposed their
2-sample equivalent to Student’ st test, again based on ranks. Their approach was shown to
produce results exactly the same as Wilcoxon’ s rank sum procedure, and the Mann-Whitney U
statistic can be readily calculated if one knows the Wilcoxon sum of ranks statistic, called W.

It was later determined that the Central Limit Theorem assures that the distribution of the
Wilcoxon rank sum statistic is normally distributed for moderately large samples sizes. A
variance formula was produced for the standard error of Wilcox’s W. Using this formulafor the
standard error, one can quickly calculate the p value for the test. There isa correction for the
number of tiesin the data. With increasing numbers of tied values, the variance of the W gtatistic
is reduced.

Larsen & Marx introduce the rank sum
statistic in chapter 14, but sinceitis
appropriate for two-

sample tests, we'll cover it here. The rank
sum statistic is calculated by ranking all of
the itemsin both groups from smallest to
largest, assigning average ranksto ties. The
rank sum statistic, W, is the sum of the ranks
in the smaller group. The variance of W is
described in Theorem 14.3.4 (at right).

Theorem 14.3.4. Letxy, Xz, ..., X and Y n+1, Yne2, .., Y™™ be two independent random samples
from f,(x) and f,(y), respectively, where the two pdfs are the same except for a possible shift in
location. Let r; denote the rank of the i™" ovservation in the combined sample (where the

smallest observation is assigned a rank of one and the largest observation, a rank of n + m). Let

+ ..
w =" rizi

where zis 1if the it" observation comes from f,(x) and zero, otherwise. Then:

_n(n+m+1)

E(W')

nm(n+m+1)

Var(W’) = 5
And

W' —n(n+m+1)/2
Jynm(n+m+1)/12

Has approximately a standard normal pdf if n > 10 and m > 10
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Ties

In the presence of ties, the variance of W is o
. re are ties, give tied observations the avi f the ranks for which those ob i
reduced and a different formula Should De USEd  [a competing. Aer computing I using average ranks, we procedures 4.9 (4.9 or (4.6,

. . d refer the value of W to Table A.6. Now, however, the test i i er than exact,
(shown at right in atable from Hollander & (o getan cxact s, cven in the i case s Comment 5 1o

When applying the large-sample approximation, the following modification should be

WOl fe 1999) . made. When there are ties, the null mean of W is unaffected, but the null variance is reduced
to
. mn ET-.(-‘;_ Dejit; + 1)
If there are no ties, there are tables of the varo(W) = 75 [*" ++1- SEE :%5-} : @13)
exact p values for the Wilcoxon rank sum o, equivalently,
test. For large sample sizes, anormal 1)

varg(W) =

approximation is used. Matlab has an exact - {'W =5 2 ”]' @

test for the rank sum test appropriate even

with ties. In essence, this program analyzes every combination of the n+m samples divided into
two groups of size n and m. This program can take an exceptionally long time if the number of
permutations exceeds amillion or so. A million permutations might take a brief lunch break to
finish depending on the speed of your computer and how fast you eat.

Wilcoxon submitted his paper describing his new statistic fully expecting to be told in review
that statisticians had already described the test. They hadn’'t. Mann & Whitney had been working
on atest based on ranks and published their test. The Mann-Whitney U test calculatesits test
statistic with the following algorithm (Hollander & Wolfe 1999):
' For the two groups X; and Y; with m & n cases, consider each of the mxn pairs
' For each pair of values X; and Y, observe which is smaller.
' If the X; value is smaller, score a1 for that pair. If theY; valueissmaller, scorea
O for that pair.
Mann & Whitney showed that in the case of no ties:
- T=U+[n(n+1)/2], where T is the sum of ranks from the Wilcoxon rank
sum test; nis size of smaller group
- U=T-n*(n+1)/2
- Thus, the Wilcoxon & MW-U tests are exactly equivalent
When, X; and Y, are tied, score ¥2

The Wilcoxon' s test and the Mann-Whitney U test have different methods for analyzing
samples, but they produce identical p values and the Mann-Whitney and Wilcoxon rank sum
statistics can be quickly converted, so only one set of tables of p valuesis required.

The Wilcoxon rank sum test should be used if the data are just ordinal in scale or in the presence
of afew outliers. The power efficiency of the rank sum test is generally quite high.

The Behrens-Fisher problem revisited for Wilcoxon’s rank-sum test

The Wilcoxon rank sum test is distribution-free, not assumption free. Hollander & Woalfe
(1999, p. 120) list the assumptions for Wilcoxon's rank-sum test, noting that “The significance
level of the rank sum test is not preserved if the two populations differ in dspersion or shape.
Thisisalso the case for the normal theory two-samplet test.” Thus, the equivalent of the equal-
variance assumption applies to Wilcoxon’ s rank-sum test. The test al so assumes independence
among the X’sand Y’ sand that the X’ s are independent of the Y’s. Thisis similar to the
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assumption of independently distributed errors for the Student’ st test, derived under the
assumption of randomly distributed errors.

Many people opt for the Wilcoxon rank sum test to avoid the problem of unequal variances
among groups. Zar (1999, p. 149) notes that the Mann-Whitney U test assumes ‘equal
dispersion’ along the measurement scale, but discounts its effects on the p-values, “ Strictly
speaking, Mann-Whitney statistics are affected by both differences between the two populations
along the measurement scales [differences in median or central tendency] and differences
between the dispersion and shapes of the two populations (e.g., Boneau, 1962), but the latter
effect is generally small compared to the former.” Underwood (1997, p. 131) describes the
assumptions underlying the Mann-Whitney (=Wilcoxon rank sum test):

“ This test makes no assumptions about normality of the distributions being
sampled ... The crucial assumptions are that that data are sampled independently
within and between populations, which isidentical to the assumption of the t-test.
Conover (1980, p. 222) described the other assumptions and pointed out that the
probabilities associated with the test are based on the underlying theory that only
if the samples are identically distributed will every arrangement of the data be
equiprobable. Thus, the distributions being sampled must be identical except for
their mean. In other words, the variances, skewnesses, etc., of the two populations
being sampled must be the same. Thisis at least as restrictive as the assumption
that the two populations are normally distributed. Even if it were only considered
to be important for the variances of the two populations, this assumption sitll
requires the two variances are equal ...

There are numerous examplesin the ecological literature where someone has
done analyses using the Mann-Whitney procedure, because the data did not
have equal variances, so a test based on the t-test could not be used. Thisis
obvioudly silly. If one test is not valid because its assumptions are not met, so is
another!”

Testing ¢°, = ¢° — TheF test

.
Shortly, we'll be covering ANOV A in which differences in means and differencesin variances
are tested with F statistics. Case Study 9.3.1 applies the F test, which is available in ssimple form
in Matlab’ s vartest2.m. Thistest is applied in Case Study 9.3.1 below.
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Thetwo-sample binomial test

Lar%n & M arx Tha)rem 9 4 1 prOVI des the Theorem 9.4.1. Let x and y denote the numbers of successes observed in two independent

sets of n and m Bernowlli trials, respectively, where py and py are the true SHCcess

|arge Sarnp| e approxi mation for testi ng the probabilities associated with each set of trials. Let p, = ’: :'; and define
difference in two proportions. Thisformula x_
should not be used for small sample sizes. For T =0, pl-p0

\'I n m

gnal | Sarnpl e S|ZES, H§]a’ S exaCt a. To test Hy: px = py versus Hy: px > py at the a level of significance, reject Hy if
hypergeometric probability test should be £ 2 2o

i K b To test Ho: px = py versus Hy: py < py at the a level of significance, reject Hy if
used. Actually, with Matlab, there is no ¢S 2.
¢ To test Hy: px = py versus Hy: px # py af the o level of significance, reject Hy ifzis

restriction to using Fisher’s exact test even either (1) < ~zq2 07 @) > zap2
with large sample sizes.

Theorem 9.5.3. Let x and y denote the nmumbers of success

The tWO'mpl e bl n0m|a| |S gl ” u%ful for sets of n and m Bernoulli trials, respectively. If py w(r; ;;”:!::nl.’.,":: :;::I ;:‘,':!F:,::‘::“,:
proV| dl ng 95% Confl dence |nterva] S for orobabilities. an approximate 10(1 @)% confidence interval for py
differencesin proportions. Larsen & Marx 1E)0-2) 2)(-2)

v | n

(2006) Theorem 9.5.3. (right) Al e -

Py i3 given by

The two-sample binomial test is not available c_x, |G -3 (3)( e
in Matlab, but | have programmed it as ’ R
binom2sample.m. | apply it in Case Study

9.4.1 and 9.4.2 below.

Case Studies

TABLE 9.2.1: Proportion of Three-Letter Words

Case Study 9.2.1 e

I'wain Proportion Qcs Proportion
Sergeant Fathom letter 0.225 Letter | 0.209
|ntrOdUCtI0n Madame Caprell letter 0.262 Letter 11 0.205
Mark Twain letters in Letter I 0196
Territonal Enterprise Lener IV 0210
First letter 0.217 Leter V 0.202

A question of authorship has arisen over a series st She  Linis o

Third letter

Of ten e%.ys ertten by i QUI ntus Curtl us Fourth letter 0.229 Letter VIII 0223

First Innocenis Abroad letier Letter IX 0220

Snodgrass’ in the New Orleans Daily Crescent. R s Tesx

Second half 0217
Some critics believe that Mark Twain was the = =
. . Table 9.2.1 shows the proportions of three-letter words found in eight Twain

author, so the proportion of three-letter WOordsin | i i e Saoterme s (Each of the Tanin works was sritien o
the ten Snodgrass essays was compared with that |7 2.0 5 RN L - o,
proportion in eight Twain Essays written at about %"«

i R5s 2.007
the Same t| me = I 5 02319 and V= :—”- = (1.2097

o =

Does an independent samplest test provide evidence to reject the null hypotheses that the
proportions are the same? The first step in any independent samplest test is to identify the
alternate hypothesis, at least so far aswhether it is one-tailed or two tailed. Since we have no
advanced or a priori knowledge about the the 3-letter word usage of either author, we'll perform
our tests two-tailed.
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| am absolutely confident that analysis by independent samplest test is appropriate. Moreover, it
would be inappropriate to analyze the same data with multiple tests if the goal were to examine
the p values to choose which test should be used. Purely for pedagogical reasons, | will perform
the Welch' st test and Wilcoxon rank sum test on these data.

Results

First, we must analyze the equal spread assumption.

Are the variances of the two groups about equal ?
The Tukey boxplot, shown in Figure 2, reveals

about equal spread in the two groups. Thet test is -

relatively robust to minor violations in the equal | —
spread assumption if the group sizesare about equal "] |

but can produce wildly inflated Probability of Type —_— -
| error, rejecting true null hypotheses more often

than the nominal Type | level, if the smaller group Figure 1. Boxplotsfor the Case Study 9.2.1
has alarger variance. data with Twain left and Snodgrass right.

Thereis no indication of unequal spread.
| analyzed the data with Matlab’ s ttest2 with equal variance. The observed t statistic was 3.88,
and the two-tailed probability of observing at statistic of 3.88 with 16 df is0.0013. The
difference in means was 0.022 + 0.012 (+ half 95% confidence interval). The pooled sd for the
difference was 0.012.

Figure 9.2.1
ER

In Figure 9.2.1, shown as Figure 2, Larsen & Marx 0
present the critical value method for evaluating the

null hypothesis. Rather than looking up or

calculating the p value for the observed statistic, Sog
3.88in this case with 16 df, one findsin advance
the critical value at which one rejects the null .
hypothesis. In this case, Larsen & Marx chose an Bt
alphalevel, which isthe Probability of Typel error

of 0.01. The value shown in their Figure, 2.9208, is Figure 2. Student’st distribution for 16 df
calculated in Matlab using the inverse t distribution: Showing the two tailed critical values for
alpha=0.01;tinv(1-alpha/2,16). Current practicein 0=0.01. Since 3.88is greater than 2.9208,
the age of fast computers and the internet is to reject the null hypothesis at the a=0.01
report the actual p value rather than using the level.

dichotomous regject, fail to reject decision rule.

—
0 29208 388
Student's t

For pedagogical purposes, | analyzed the data with Matlab’ s ttest2 with the unequal variance
option. This performsthe Welch’'st test. The observed t statistic was 3.7, with the Satherthwaite
approximation for the df of 11.7 (reduced from 16 because of the unequal variance). The two-
tailed probability of observing aWelch'st statistic of 3.7 with 11.7 df is0.0032. The difference
in means was 0.022 + 0.013 (+ half 95% confidence interval). The separate standard deviations
were 0.015 and 0.010.



Case Study 9.2.2
Introduction to 9.2.2

This case study involves
two separate t tests. An
instructor wanted to
determineif acting more
enthusiastic in class
improved teacher ratings
in another category,
knowledge of the subject.
S0, using an unreplicated
design, he taught a spring
and fall class. Hetried to
deliver the same material
in both classes. He
selected the spring classto
have the same
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TABLE9.2.2
Fall, Spring. ¥,
n=229 m =243
=214 vy =421
sy = 0.94

sy =083

Let uy and gy denote the true means associated with the two different teaching
styles. Therc is no reason to think that increased enthusiasm on the part of the
instructor would decrease the students’ perception of enthusiasm, so it can be argued
here that H, should be one sidcd. That is. we want to fest

Hy: jty = py
VETSUS

Hi:puy < py

letw =003

demographics as the fall class. [Just a note here. An experiment without replication is not an
experiment at all. Don’t follow this professor’ s methods).

In this problem, we are not given any of the raw
data, only summaries. That is sufficient to perform
the t tests, but not with the standard software. If this
were an IBM PASW course, I'd have to write an
m.file to solve the problem in syntax, but there
already is such afile at Raynald Levesgue' s SPSS
tools website. Matlab doesn’'t have a program for
performing t tests with aggregated data such as that
in Case Sudy 9.2.2, but | wrote one called

TABLE9.2.3
“all, x; Spring, y;
n =229 m = 243
¥ =361 y =4.05
sy = 0.84 sy = 0.95

student2group.m which solves the problem.

Asusual in performing any statistical test, we must evaluate the assumptions of the test and set
the a priori hypotheses. In this case, the a priori null and alternate hypotheses are that the
professor’ s enthusiasm ratings remained unchanged vs. the 1-tailed alternative that students
perceived his increased enthusiasm. For the second test, the null hypothesisisthat his perceived
knowledge remained the same vs. the alternative hypothesis that students in the enthusiastic
class perceived him to be more knowledgeable.

Results for 9.2.2

The sample sizes were large and approximately equal and the standard deviation were
approximately equal. There would be no reason to question the appropriateness of an

independent samplest test.
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Using my student2group.m, | first analyzed the enthusiasm hypothesis. The observed t statistic
was -25.4, and the one-tailed probability of observing at statistic thislow or lower with 470 df is
1.7 x 10%°. 1 would never report a difference this small. Conventionally, unless the test is exact,
one would report the p value as < 10°. The pooled standard deviation for the differences was
0.899. The differencein means (Fall - Spring) was-2.07 + 0.16 (+ half 95% confidence
interval), indicating greater perceived enthusiasm.

| then analyzed the knowledgeability hypothesis. The observed t statistic was -5.3, and the one-
tailed probability of observing at statistic this low or lower with 470 df is 8.1 x 10%, which |
would report as p < 10°. The pooled standard deviation for the differenceswas 0.898. The
difference in means (Fall - Spring) was-0.44 + 0.16 (£ half 95% confidence interval),
indicating greater perceived knowledge in the spring class.

Case Study 9.3.1 TABLE 9.3.1: Alpha-Wave Frequencies (CPS)
Inmates were randomly assigned to solitary confinement | Nonconfined. x _ Solitary Confinement, y;
or alowed to remain in their cells. After 7 days, their ‘“; ":f'
alpha waves were measured. i ~
10.9 10.3
The distributions of these data are shown in Figure 3. lU-i *ﬁ
10.3 9.
9.6 9.9
The variances of solitary and nonconfined groups were 1.1 9.5
0.357 and 0.211, respectively with aratio of variances 1.2 9.0
of 1.70. The probability of observing this ratio by chance s 109

equals the probability of observing an F statistic —
larger than 1.70 or smaller than 0.59 (i.e., 1/1.7) ‘ —
with 9 and 9 df. That two-tailed probability is 0.44. |
The 95% confidence interval for theratio of 1.70 is
0.42 and 6.83, which clearly includes the null
hypothesis's expected ratio of 1.0.

10+

9.5

o i

Figure 3. Boxplots for the nonconfined
(Ieft) and solitary confinement (right) alpha
waves.
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Figure 4 shows the F distribution with 9 and 9 df

The observed F ratio would haveto exceed 4.026in
order to rgject the null hypothesis with a two-tailed

P value of 0.05.
Case Study 9.4.1

The mitigation rate is the proportion of criminal
cases in which the defendant qualifies for prison
time but receives a greatly shortened term or no
prisontime at al. In Escambia County the

cases (61.7%) to 334 out of 660 cases (52.1%).
Could this difference be attributed to chance?
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Figure 9.3.3
T

Area=0.025

Area=0.025

L
00248

L
1

H
1.7
F

4.026

Figure 4. The F distribution with 9 and 9 df.
In order to regject the null hypothesis of
egual variances, an Fratio of 0.25 or 4.03
mitigation rate was reduced from 1033 out of 1675 Would have to be observed. The observed F
ratio of 1.7 iswell within the two alpha =
0.05 critical values.

The difference of 9.55% has a 95% confidence interval of 5.1% to 14.0%, which clearly doesn’'t
include 0 so the the null hypothesis can be rejected at the alpha=0.05 level. The actual p value
for observing az statistic of 4.22 is 2.4 x 10°. So, thereis very strong evidence to reject the null

hypothesis of the difference in mitigation rate being due to chance.

Case Study 9.4.2

The proportion of men and women reporting
nightmares often or seldom is shown to the
right. Using the two sample binomial test,
could these differencesin proportions (34.4%
vs. 31.3%) be attributed to chance?

The difference in proportions was a mere
3.13%. If the null hypothesis were true, the

TABLE 9.4.1 Frequency of Nightmares

Men Women Total
Nightmares often 55 60 115
Nightmares seldom 105 132 237
Totals 160 192
% often: 344 313

two sample binomial tests whether these two

proportions could have been drawn from a population with an observed proportion of 32.67%.

The large sample approximation uses a z statistic of 0.6225 to calcul ate the probability of

observing a difference this great or greater to be 0.5336. The difference has a 3.13% had a 95%
confidence limit of -6.7 to 13.0% which clearly includes the null hypothesis's expected value of

0.

Case Study 9.5.1

The enamel spectropenetration gradient differs between men
and women (seeright). Test for this difference and find the 95%

confidence limit for the difference.

Male, x; Female, v,
1.9 4.8
54 53
5.0 3.7
53 4.1
54 5.6
6.6 4.0
6.3 36

4.3

50
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The boxplots for males and females shown in
Figure 5 indicates about equal spread, so the
independent samplest test is appropriate.

The difference in gradient between men and women
was 0.91 + 0.80 (z half 95% ClI). The two-tailed p
for observing t=2.43 with 14 df is0.030. Thereis

strong evidence to reject the null hypothesis of
equal gradients between men and women.

Case Study 9.5.2
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Figure 5. Boxplots for enamel

spectropenetration gradients for males (1eft)

and females (right).

The goal of this case study is to construct a 95% confidence interval for the ratio of variances for
glacia flow rates with photographs taken every 3 yearsvs. every 5 years.

The unusual boxplot for these datais shown in
Figure 6. The variances were 0.00022 and 0.00012
with ratio 1.87. The 95% CI for the observed ratio

is[0.203 11.614], which includes 1. The

probability of observing an Fg, statistic > 1.87
under the null hypothesis of equal variancesis 0.57.
Therefore, | conclude that there islittle evidence to

reject the hypothesis that glacial flow rate variance

in 3-year and 5-year photographs are the same.
Case Study 9.5.3

Lister performed amputations with and
without carbolic acid disinfectant. In the 40
with carbolic acid 34 patients survived; in the
35 without carbolic acid, 19 patients
survived. Could these differences be due to
chance? Calculate a 95% confidence interval
for the difference using the two-sample
binomial.

Under the null hypothesis, the two sample
binomial estimates the probability of survival

Figure 6. Boxplotsfor glacia flow ratesfor
three-year photographs (left) and five-year

photographs (right).

TABLE 9.5.3: Mortality Rates—Lister's Amputations

T

Carbolic acid used?

No Yes Total
Patient Yes 19 M4 53
lived? No 16 i) 22
Total 35 40

as 71%, with 85% of the patients surviving with carbolic acid and 54% without. The large
sample z statistic for the two-sample binomial test is 2.91 with two-tailed p value of 0.0036. The
difference in proportions with 95% confidence interval is30.7 + 19.9.

I’ve also used the user-contributed m.file fishertest.m to cal culate the exact probability of
observing the results shown in Table 9.5.3 or results more extreme. Fisher’ stest is based on the
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hypergeometric probability distribution and is the appropriate test if sample sizes are too small
to warrant the use of the large-sample z approximation. In this case, the exact p value is 0.0037.

Case Study 14.3.4 Baseball Game L ength

The National league doesn’t have designated _ e i
hitters but the American League does. Are the Obs. # Team Time (min) i % s
lengths of the games different in the National 1 Baltimore E B F 3|
and American league? Shown at right are the s pottona s 75 1 s
average game compl etion times for the S ey o S B
twenty six major league teamsin 1992. 6  Detroit 179 245 1 2.5

B Miwiker A ST
These data_were tested with a Wi I(_:oan rank 4 ;’:‘Lﬂfjfr‘:( AL . R
sum test. Frst, the boxplot shown in Figure 7 Il Oakland 7 a1 21
didn’t reveal any issues with unequal spread. E e A B

14 Toronto 1 '.'_".-' 21 1 21
The Wilcoxon rank sum statistic was 110.5. :; ?ﬁt‘i; (NL) l:g ?'5 0 3
The large sample p value for thistest statistic B o i s b .
was p=0.0084, and the exact p value was 19 Los Angeles 174 165 0 0
p=0.0065. Note that the text lists the value of D NethdE b o4 4
the test statistic as 240.5. Thiswill produce = gltii'fbd:rlghiﬂ 2 5
anidentical p value as 110.5. The sum of 24 San Diego 161 350 0
ranks of n and m groupsis n(n+m+1) or 2 s @ L 8
13*27 for these 26 major |eague teams. ' = 2405
240.5= 13*27-110.5. Larsen & Marx just
summed the American League teams, whereas, the
Matlab ranksum.m program summed the National —
league teams. Since it isthe deviation from the _ 3

average rank of n(n+m+1)/2 that serves asthe

numerator of the test stastic, both test statistics with :
identical deviations from the average will produce ’ —
the same p value.

155

Figure 7. Boxplots for average game length
for American (left) and National (right)
league teams.
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Chapter Outlines

Annotated outline (with Matlab scripts) for Larsen & Marx Chapter 9

9 Two-sample problems (Summer 2011 Week 8 & Week 9)[p 553]
William Sealy Gosset (“ Student”) (1876-1937)
9.1 INTRODUCTION
9.2  TedtingH,: 4, =, — Thetwo samplet test
Theorem 9.2.1
Theorem 9.2.2

Case Study 9.2.1 Disputed Authorship

% LMcs090201 4th.m

% Case Study 9.2.1 p. 557 in

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition

% Examples of two sample tests

% Written by Eugene.Gallagher@umb.edu in 2001, revised 1/21/11, 2/27/11

% http://al pha.es.umb.edu/faculty/edg/files/edgwebp.html

Twain=[.225 .262 .217 .240 .230 .229 .235 .217]";

Snodgrass=[.209 .205 .196 .210 .202 .207 .224 .223 .220 .201]}

% boxplot

[T,C]=size(Twain);[S,CS|=sze(Snodgrass);

DATA=[Twain;Snodgrass];

G=[ones(T,1);zeros(S,1)];

boxplot(DATA,G,'labels { Twain','Snodgrass})

figure(gcef),pause

fprintf('The difference in means (Twain - Snodgrass) was %6.4f\n’,...
mean(Twain)-mean(Snodgrass));

[H,P,CI,.STATS] = ttest2(Twain,Snodgrass,0.05,'both’,'equal’);

fprintf(...
\nThe 2-tailed p for Student"st (=%4.2f, %d df) =%6.4f\n’,...
STATS.tstat, STATS.df,P);

fprintf('The pooled sd for the difference is %6.4f\n',STATS.sd)

fprintf(...
"The lower and upper CI for the observed difference=%6.3f: [%6.3f %6.3f]\n,...
mean(Twain)-mean(Snodgrass),Cl(1),CI(2));

fprintf(\nThe unequal variance, or Welch t test\n’);

[H,P,CI,STATS = ttest2(Twain,Snodgrass,0.05,'both’,'unequal’);

fprintf(...
\nThe 2-tailed p for Welch"st (=%4.2f, %5.2f df) =%6.4f\n’,...
STATS.tstat, STATS.Af,P);

fprintf('The separate sd"s for the samples were %6.4f and %6.4f\n",STATS.sd)

fprintf(...
"The lower and upper Cl for the observed difference=%6.3f: [%06.3f %6.3f]\n’,...
mean(Twain)-mean(Snodgrass),Cl(1),CI(2));


http:difference=%6.3f
http:6.4f\n',STATS.sd
http:difference=%6.3f
http:6.4f\n',STATS.sd
http://alpha.es.umb.edu/faculty/edg/files/edgwebp.html
mailto:Eugene.Gallagher@umb.edu
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% Plot Figure 9..2.1 using Fgure 4.3.6 (LMex040307_4th.m) as amodel.
df=16;

X=-4.25:0.01:4.25;

Y = tpdf(X,df);

plot(X,Y,--r";

axis([-4.25 4.25 0 0.4]);title('Fgure 9.2.1''FontSize',22);
ax1=gca;

xlabel ('Student"s t','FontSiz€',20),

ylabel ('f_y(y)',FontSize',20);

axl=gcg;

set(ax1,'xtick’,[-3.88 -2.9208 0 2.9208 3.88],'FontSize',18);
set(ax1,'ytick',0:.1:0.4,'FontSize', 18)

hold on;

xfu=2.9208:0.01:4.25;yfu=tpdf (xfu,df);

fill([2.9208 xfu 4.25]',[0 yfu O]',[ .8 .8 1])
xfl1=-4.25:0.005:-2.9208;yf|=tpdf (xfl,df);

fill([-4.25 xfl -2.9208]",[0 yfl O]',[.8 .8 1])

text(-3.9,0.03, ‘Area=0.005','FontSize',18);
text(2.9208,0.03,'Area=0.005','FontSize',18)
figure(gcf);pause

hold off;

Case Study 9.2.2 Teacher evaluations using only aggregate data

% LMcs090202_4th.m

% Table9.2.2 & Table 9.2.3 data

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition

% Page 560-562. Case Study 9.2.2, 2-sampl e t-test using grouped data

% Written by Eugene.Gallagher@umb.edu

% http://al pha.es.umb.edu/faculty/edg/files/edgwebp.html

% Written & last revised 11/17/2010

Xn=229;Xmean=2.14;Xstd=0.94;Y n=243;Y mean=4.21;Y std=0.83;alpha=0.05;

[D,t,df,pvalue,Cl,sp]=student2group(Xn,Y n,Xmean,Y mean,Xstd,Y std,al pha);

fprintf(‘'The Student"st statistic was %6.4f with %3.0f df.\n',t,df)

fprintf('The pooled standard deviation was %6.4f\n',sp)

fprintf('The 1-tailed p for enthusiasm =%6.2g\n',pvalue/2);

fprintf('The difference is %4.3f with 95%% CI = [%5.3f %5.3f]\n',D, ...
CI(2),CI(2));

% Table9.2.3 data

Xn=229;Xmean=3.61;Xstd=0.84;Y n=243;Y mean=4.05;Y std=0.95;alpha=0.05;

[D,t,df,pvalue,Cl,sp]=student2group(Xn,Y n,Xmean,Y mean,Xstd,Y std,al pha);

fprintf('The Student"st statistic was %6.4f with %3.0f df .\n',t,df)

fprintf("'The pooled standard deviation was %6.4f\n',sp)

fprintf('The 1-tailed p for knowledgeable =%6.2g\n',pvalue/2);

fprintf('The difference is %4.3f with 95%% CI = [%5.3f %5.3f]\n',D, ...
CI(1),CI(2));


http:Xn=229;Xmean=3.61;Xstd=0.84;Yn=243;Ymean=4.05;Ystd=0.95;alpha=0.05
http:Xn=229;Xmean=2.14;Xstd=0.94;Yn=243;Ymean=4.21;Ystd=0.83;alpha=0.05
http://alpha.es.umb.edu/faculty/edg/files/edgwebp.html
mailto:Eugene.Gallagher@umb.edu
http:text(-3.9,0.03
http:fill([-4.25
http:set(ax1,'xtick',[-3.88
http:axis([-4.25
http:X=-4.25:0.01:4.25
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function [D,t,df ,pvalue,Cl,sp]=student2group(Xn,Y n,Xmean,Y mean, X std,Y std,al pha)
function [D,t,df ,pvalue,Cl,sp]=student2group(Xn,Y n,Xmean,Y mean, X std,Y std,al pha)
% Student't 2-sample equal variance t test with grouped data
% [D,t,df,pvalue,Cl,sp]=student2group(Xn,Y n,Xmean,Y mean,X std,Y std,al pha)
% Input: Xn, Yn=Sizeof X and Y groups
% Xmean, Y mean = means for 2 groups
% Xstd, Y std = standard deviations for 2 groups
% alphalevel for Cl, optional, 95% if not specified
% Output: D=Xmean-Y mean;
% t=Student'st statistic
% df=degrees of freedom for t statistic
% p value, 2-sided, for t Statisitc, with df degrees of freedom
% Cl for 1-alpha Cl, [L U];95% CI if apha not specified.
% Sp pooled standard deviation for difference
% Based on Theorems 9.2.1 & 9.2.2, page 555 & 557 Larsen & Marx (2006)
% Introduction to Mathematical Statistics, 4th edition.
% uses Student's t from Stati stics toolbox
% Written by Eugene.Gall agher@umb.edu, Revised 11/17/10, 2/27/11 (added
% sp to output)
% see also studlsample, stud2sample,
n=xn;
m=Yn,
D=Xmean-Y mean;
% Estimated pooled standard deviation (Theorem 9.2.1)
sp=sgrt( ((n-1)*Xstd*2+(m-1)*Y std™2)...
[ (n+m-2));

t=D/(sp* sgrt(/n+1/m));
% Use Matlab'stcdf for p values
df=n+m-2;
if t>=0

pvaue = 2* (1-tcdf(t,df));
else

pvalue=2*tcdf(t,df);
end
if nargin<3;

alpha=0.05;
end
% Use tinv.m from statistics tool box
HalfCl=tinv(1-alpha/2,df)* sp* sgrt(1/n+1/m);
Cl=[D-HafCl D+HalfCl];

Questions p. 563-568
9.3 TESTINGH, 0% = ozy—THE FTEST
Theorem 9.3.1

Case Study 9.3.1
% LMcs090301_4th.m


http:alpha=0.05
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% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th ed

% Case Study 9.3.1, an example of the 2-sample Variance test

% Written by Eugene.Gall agher@umb.edu

%

alpha=0.05;

Nonconfined=[10.7 10.7 10.4 10.910.510.39.6 11.1 11.2 10.4]}

Solitary=[9.6 10.4 9.7 10.39.29.39.99.59.0 10.9]’;

fprintf(...

"The variance of solitary and nonconfined groups were %6.3f and %6.3f\n’,...
var(Solitary),var(Nonconfined));

fprintf('The ratio of variances was %6.4f\n",var(Solitary)/var(Nonconfined))

boxplot([ Solitary;Nonconfined],[ones(10,1);zeros(10,1)],...
'labels,{'Nonconfined','Solitary'} );figure(gcf); pause

[H,P,CI,STATS] = vartest2(Solitary,Nonconfined,al pha,'both’);

df 1=STATS.df1;df2=STATS.df2;

fprintf('The F statistic with %2.0f, %2.0f df is %6.4f\n’,...
STATS.df1,STATS.df2,STATS.fstat)

fprintf(‘'The p value is %6.4f with Cl: %6.4f %6.4f.\n',P,ClI)

% Plot Figure 9.3.3 using Figures 4.3.6 (LMex040307_4th.m) & Figure 9.2.1

% as model.

X=0:0.01:5;

Y = fpdf(X,df1,df2);

Y test=fpdf(STATS.fstat,df 1,df2);

plot(X,Y,'r', 'LineWidth',2);

axig([-.65500.75));

title('FHgure 9.3.3,'FontSize,22);

ax1=gca;

xlabel ('F,'FontSize',20),

ylabel ('f_y(y)',FontSize',20);

axl=gcg;

alpha=0.05;Fcritl=finv(a pha/2,df 1,df2); Feritu=finv(1-al pha/2,df 1,df 2);

set(ax1,'xtick’,[0 0.248 1 1.70 Fcritu],'FontSize,18);

set(ax1,'ytick',0:.1:0.7,'FontSize', 18)

hold on;

plot([STATS.fstat STATS.f¢tat]',[0 Ytest]',--r','Linewidth',2)

xfu=Fcritu:0.01:5;yfu=fpdf (xfu,df 1,df2);

fill([Feritu xfu 5]',[0 yfu 0]',[.8 .8 1])

xf1=0:0.005:Fcritl;yfl=fpdf (xfl,df 1,df2);

fill([O xfl Feritl]',[O yfl 0]',[.8 .8 1])

text(-.6, 0.15,'Area=0.025','FontSize',18);
text(Fcritu,0.1,'Area=0.025','FontSize',18)
figure(gcf);pause

hold off;

Questions p. 572-576
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9.4  Binomial data: testing H, : p,=p,
Case Study 9.4.1
9.4.1 Applying the generalized likelihood ratio criterion
Theorem 9.4.1

Case Study 9.4.1

% LMcs090401_4th.m

% Application of 2-sample binomial test, Theorem 9.4.1in

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% Written by Eugene.Gallagher@umb.edu

% Calls Gallagher's binom2sample.m

% Written Nov. 2010, revised 12/12/2010, 2/27/2011

[D,phat,z,pval ue,Cl,obsp]=binom2sampl e(1033,1675,344,660,0.05);
fprintf('The expected joint probability is %6.4f\n',phat)

fprintf('The z Satistic is %6.4f with two-tailed p = %6.4g9\n',z,pval ue)
fprintf('The observed proportions were %6.4f and %06.4f\n’,0bsp)

fprintf(...

‘The difference in proportions is %6.4f with confidence interval: %6.4f %6.4f\n',D,CI)

function [D,phat,z,pval ue,Cl,obsp]=binom2sampl e(x,n,y,m,al pha)
% 2-sample binomial test.
% [D,phat,z,pvalue,Cl]=binom2sampl e(x,n,y,m,a pha)
% Input: Sample 1: x successesin ntrials
% Sample 2: y successesin mtrias
% alphalevel for Cl, optional, 95% if not specified
% Output: D=x/n-y/m,
% phat= expected p value under the no-difference null hypothesis
% Z=test statistic
% p value, 2-sided, for z statistic
% Cl (1-apha) percentile for D;95% CI if apha not specified.
% obsp=obsrved proportions = [x/n y/m|
% Based on Theorem 9.4.1, page 506 Larsen & Marx (2001, 3rd edition) and
% Page 578 in Larsen & Marx (2006, 4th edition) Introduction to
% Mathematical Statistics and for Cl's Theorem 9.5.3 (p. 514) in Larsen &
% Marx (2001, 3rd edition), Page 587 in Larsen & Marx (2006, 4th edition
% Written by E. Gallagher; revised 12/19/10
if x>n|y>m
error('Successes can"t exceed number of trials)
end
D=x/n-y/m;
phat=(x+y)/(n+m);
z=D/sgrt(phat* (1-phat)/n+phat* (1-phat)/m);
% Use Matlab stats toolbox normcdf for significance of z,
% the standard normal variate
% could use statbox normp.m or Gallagher's zprob.m or stixbox pnorm.
if z>=0
pvalue=2* (1-normcdf(2));
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else
pval ue=2* normcdf(z);
end
if nargin<5;
alpha=0.05;
end
% Use Matlab's norminv.
% Theorem 9.5.3 (p. 514);
% n.b., the Cl uses adifferent estimator for the standard deviation
% to find Cl'sfor the difference D
HalfCl=norminv(1-alpha/2)* sgrt(((x/n)* (1-x/n)/n) +((y/m)* (1-y/m)/m));
Cl=[D-HafCl D+HalfCl];
obsp=[x/n y/m];

Case Study 9.4.2

% LMcs090402_4th.m

% Written by Eugene.Gall agher@umb.edu

% Calls Gallagher's binom2sample.m

% Written October 2010, revised 2/27/11

[D,phat,z,pval ue,Cl,obsp]=binom2sampl e(55,160,60,192,0.05);
fprintf('The expected joint probability is %6.4f\n',phat)

fprintf('The z Satistic is %6.4f with two-tailed p = %6.4f\n’,z,pvalue)
fprintf('The observed proportions were %6.4f and %6.4f\n',0bsp)
fprintf(...

'The difference in proportions is %6.4f with confidence interval: %6.4f %6.4f\n',D,CI)

Questions p. 580-582
9.5 CONFIDENCE INTERVALSFOR THE TWO-SAMPL E PROBLEM
Theorem 9.5.1

Case Study 9.5.1

% LMcs090501_4th.m

% Larsen & Marx (2006,p. 583) Introduction to Mathematical Statistics, 4th

% Edition. Case Study 9.5.1 An example of Cl'sfor atwo-sample proportion

% Examples of two sample tests

% Written by Eugene.Gall agher@umb.edu 11/14/10, revised 11/17/10

Mae =[495.45.0555.46.66.34.3]}

Female=[4.85.33.74.15.6 4.0 3.6 5.0]";

% boxplot

[M,CM]=sze(Male);[F,CF|=sze(Female);

DATA=[Mae;Femal€];

G=[ones(M,1);zeros(F,1)];

boxplot(DATA,G)

[H,P,CI,STATS] = ttest2(Male,Female,0.05,'both’,'equal’);

fprintf(...
\nThe 2-tailed p for Student"st (=%4.2f, %d df) =%6.4f\n’,...
STATS.tdtat, STATS.df,P);

fprintf(...
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"The lower and upper CI for the observed difference=%6.3f: [%6.3f %6.3f]\n’,...

mean(Male)-mean(Female),CI(1),CI(2));

% Analyze with Wilcoxon ranks sum statistic, the major non-parametric alternative
% Student'st test. Frst with the normal approximation:
[Wilcoxpvalue,W,U]=Wilcoxranksum(Male,Female);

fprintf(...

\nThe 2-tailed p for Wilcoxon"s rank sum with large sample normal approx=%6.4f\n’,...

Wilcoxpvalue);

% Do exact test with Wilcoxon ranksum
[Wilcoxexactp,W,U]=wilcoxranksum(Male,Female,1);
fprintf(...

‘The 2-tailed exact p for Wilcoxon"s rank sum =%6.4f\n’,...

Wilcoxexactp);
[D,Studp,t,df,RandPermP,ClpD,Clr]=randp2sample(Male,Female,1e4,1,0.05);
fprintf(...

"The 2-tailed p using random permutations of t =%6.4f\n’,...

RandPermP);

function [D,Studp,t,df,RandPermP,ClpD,Clr]=randp2sample(X,Y ,Trials,UseT ,a pha);
% Test for difference between 2 means using random permutations

% format [D,Studp,t,df,RandPermP,ClpD,Clr]=randp2sample(X,Y,Trials,UseT ,alpha);
% Example: [D,Studp,t,df,RandPermP,Clp,Clr]=randp2sample(X,Y);

% Input: X, Y column or row vectors with cases as rows, variables as columns.

% Trias, number of random permutations [Optional]

% if nargout>2 & nargin<3, Trials=1e4

% UseT, ==1, Uset statistic for random permuation tests

% ==0, Use abs(D from randperm)>abs(D) for random permutation tests
% Note, these two methods produce nearly identical results.

% Output: D Difference in means

% Studp parametric p value for difference based on Student's t, two-tailed
% T Student'st statistic, n+m-2 df

% df for 2-sample, equal mean t test, equal variance assumed

% RandPermP  2-tailed p test of D=0, based on Random permutations

% ClpD Parametric 1-alpha% CI for D based on Student's t
% Clr 1-apha% ClI for differenceof X & Y,
% note that this Cl isfor adifference of 0. It is not the CI for
% the observed difference
% Reference: Legendre & Legendre, Manly
% Written by Eugene.Gallagher@umb.edu
if nargout>4 & nargin<3
Tridls=1e4;
UseT=1,
alpha=0.05;
elsaf nargin<5
alpha=0.05;
end
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X=X();
n=length(X);
Y=Y();
m=length(Y);
[D,t,df,Studp,ClpD]=stud2sample(X,Y ,a pha);
df=n+m-2;
XY=[X;Y];
if nargin>3
UseT=logical(UseT); % Simple 1'sand O's are evaluated logically, but thisis
% more formal, and perhaps faster.
else
UseT=logical (0);
end
if nargout>3
Tally=0; % Create amatrix of all zerosto hold results

if nargout>6
TallyD=zeros(Trials,1);
end
for i=L1:Trials
j=randperm(n+m);
RandD=mean(XY (j(1:n)))-mean(XY (j(n+1:n+m)));
if nargout>6
TallyD(i)=RandD;
end
Sp=ggrt( ((n-1)*var(XY (j(1:n)))+(m-1)*var(XY (j(n+1:n+m))))...
[ (n+m-2) );
randt=RandD/(Sp* sgrt(1/n+1/m));
if UseT % Uset statistic to determine p value
if abs(randt)+eps >= abs(t)
Tally=Tally+1;
end
else
if abs(RandD)+eps>=abs(D) % Two-sided test using absolute value of D
Taly=Tally+1;
end
end
end
end
RandPermP=Tally/Trids,
if nargout>6
TallyD=sort(TallyD);
Clr=zeros(1,2);
Clr(1)=TalyD(floor(alpha/l2* Trials));
Clr(2)=TalyD(ceil ((1-alpha/l2)* Trials));
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end

Theorem 9.5.2

Case Study 9.5.2

% LMcs090502_4th.m

% Larsen & Marx (2006,p. 585) Introduction to Mathematical Statistics, 4th
% Edition. Case Study 9.5.1 An example of Cl'sfor aratio of variances

% Examples of two sample tests

% Written by Eugene.Gall agher@umb.edu 11/14/10, revised 11/17/10
X=[0.730.76 0.750.77 0.73 0.75 0.74];

Y=[0.720.740.740.72 0.72];
boxplot([Y;X],[ones(length(Y),1);zeros(length(X),1)]);figure(gcf)
[H,P,CI,STATS] = vartest2(X,Y,0.05,'both’)

Theorem 9.5.3

Case Study 9.5.3

%LMcs090503_4th.m

% Written by Eugene.Gall agher@umb.edu

% Calls Gallagher's binom2sample.m, which

% Written November 2010, Revised 12/12/10
[D,phat,z,pvalue,Cl]=binom2sampl e(34,40,19,35,0.05)

Questions p 588-591
9.6  Takinng asecond look at statistics (choosing samples
Appendix 9.A.1 A derivation of the two-samplet test (A proof of Theorem 9.2.2)
Appendix 9.A.2 Minitab applications
Appendix 9.A.2 Power calculationsfor atwo-samplet test

Annotated Outline (with Matlab scripts) for Larsen & Marx Chapter 14

14 Nonparametric statistics
14.1 Introduction
14.2 The Sign Test

Theorem 14.2.1

Case Study 14.2.1

% LMcs140201_4th.m

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition

% page 804. A case study solved by the sign test

% Written by Eugene.Gallagher@umb.edu 11/16/10 Revised 11/16/10, 3/1/11

%

D=[7.027.357.327.337.157.26 7.257.357.387.207.317.24 7.34 ...
7.327347147207417.777127457.287.347.227.327.4 ...
6.997.1737.217.337.287.357.247.367.097.326.957.35 ...

7.36 6.6 7.29 7.31];

[p,h,stats] = signtest(D,7.39,0.05,'method','exact’);

fprintf(\nThe sign test exact p=%6.4g\n',p);
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[p,h,stats] = signtest(D,7.39,'method','approximate’);

fprintf('The sign test approximate p=%6.4g;z=%6.4f\n',p,stats.zval);

[H,P,CI,STATS] = ttest(D,7.39);

fprintf('The one-samplet test 2-tailed p=%6.4g\n’,P);

fprintf('The mean pH = %4.2f with 95%% CI: [%4.2f %4.2f]\n,mean(D),...
CI(2),CI(2));

[P,H,STATS] = signrank(D,7.39,'a pha,0.05,'method’,'exact’);

fprintf('The sign rank test exact p=%6.4g\n'",P);

[P,H,STATS] = signrank(D,7.39,"a pha’,0.05,'method','approximate’);

fprintf(‘'The sign rank test approximate p=%6.4g\n',P);

% Plot histogram and check for symmetry

binsize=.1; % Needed in order to properly scale the normal pdf

edges=6.4:binsize:8;

% hist(D);

[N,BIN] = histc(D,edges);

bar(edges,N, histc)

axig([6.358.05 0 21))

set(get(gca,'Children’),'FaceColor',[.8 .8 1]);

xlabel (‘'pH','FontSi ze',20);

ylabel'Number of Cases,'FontSize',20);

ax1=gca;

set(ax1,'Ytick',[0:5:25],'Xtick’,[6.4:0.2:8])

figure(gcf);pause

% Superimpose the normal probability pdf on a histogram of differences.

% The normal probability equation is provided on p. 293

% Thisisfor mean O, and unit standard

% deviation. The more general equation (Legendre & Legendre, 1998 p. 147) is.

% f(y_j)=1/(sart(2* pi)*sigma._j)*exp(-1/2* ((y_j-mu_j)/sigma_j)"2);

n=length(D);

mu_j=mean(D);

sigma_j=std(D); % sigmg] is the standard deviation; = 1 after Z transform

y j=6.35:0.01:8.05;

fy_j=1/(sart(2*pi)*sigma_j)*exp(-1/2*((y_j-mu_j)./sigma._j)."2);

fy_j=n*binsize*fy j;

cutoff=7.39;

fy_cutoff=n*binsize/(sqrt(2* pi)*sigma_j)*exp(-1/2* ((cutoff-mu_j)./sigma j).*2);

% will properly scale the height of the pdf

% fyj=1/(sart(2* pi)*sigmaj)* exp(-1/2* ((y-muj)/sigmaj)."2);

% Plot using ax1 handle, saved above,to save this graph

% on top of the previous graph.

v=axis

hl=line(y_j,fy_j ,'Color',r','Parent',ax1);

set(hl,linestyle',--",'color’,'r, linewidth',2)

h1=line([cutoff cutoff]’,[O fy_cutoff]’,'Color','b’, Parent’,ax1);

set(hl,linestyle,-.",'color','b', linewidth',3)
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h2=line([cutoff cutoff]',[fy_cutoff v(4)]',/Color','b','Parent’,ax1);
set(h2,'linestyl€,-.",'color','b', linewidth’,3)

s=sprintf('Case Study 14.2.1, %2.0f samples untransformed',n);
title(s,'FontSize',22)

figure(gcf);pause

14.2.1 A Small-Sample Sign Test, Use the exact binomial

Case Study 14.2.2

% LMcs140202_4th.m

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition

% page 806. A case study solved by the sign test

% Written by Eugene.Gallagher@umb.edu 11/16/10 Revised 11/16/10, 3/1/11

%

D=[4.84.03.84.33.94.63.13.7];

expected=3.55;

[H,P,CI,STATS] = ttest(D,expected,0.05,'both’);

fprintf(\nThe one-sample t test 2-tailed p=%6.4g\n",P);

fprintf(...

‘The mean caffeine = %4.2f (g/100g residue) with 95%% Cl: [%4.2f %4.2f]\n’,...
mean(D), CI(2),CI(2));

[p,h,stats] = signtest(D,expected,0.05,'method’,'exact’);

fprintf('The sign test statistic is %4.1f with exact 2-tailed p=%6.4g\n’,stats.sign,p);

[p,h,stats] = signtest(D,expected,'method’,'approximate);

fprintf('The sign test z=%5.3f with approximate 2-tailed p=%6.4g\n',stats.zval,p);

[P,H,STATS] = signrank(D,expected,'a pha,0.05,'method’,'exact’);

fprintf(...

‘The sign rank test statistic is %4.1f with exact 2-tailed p=%6.4g\n’,...

STATS.signedrank,P);

[P,H,STATS] = signrank(D,expected,'al pha,0.05,'method','approximate’);

fprintf(‘'The sign rank test approximate 2-tailed p=%6.4g for z=%6.4f\n',P,STATS.zva);

% Plot histogram and check for symmetry

binsize=.2; % Needed in order to properly scale the normal pdf
edges=3:binsize:5;

% hist(D);

[N,BIN] = histc(D,edges);

bar(edges,N, histc)

axig([2.95.102.1])

set(get(gca,'Children’),'FaceColor',[.8 .8 1));

xlabel ('Caffeine Residue (g/100 g dry weight)','FontSiz€',20);
ylabel (Number of Cases,'FontSize',20);

axl=gcg;

set(ax1,'Ytick',[0:2],'Xtick',[3:0.2:5])

figure(gcf);pause

% Superimpose the normal probability pdf on a histogram of differences.
% The normal probability equation is provided on p. 293
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% Thisisfor mean O, and unit standard

% deviation. The more general equation (Legendre & Legendre, 1998 p. 147) is.
% f(y_j)=L(sart(2*pi)*sigma._j)*exp(-1/2*((y_j-mu_j)/sigma_j)"2);
n=length(D);

mu_j=mean(D);

sigma_j=std(D); % sigmg] is the standard deviation; = 1 after Z transform
y_j=2.9:.0.01:5.1;
fy_j=1/(sart(2*pi)*sigma_j)*exp(-1/2*((y_j-mu_j)./sigma._j)."2);
fy_j=n*binsize*fy j;

cutoff=expected;

fy_cutoff=n*binsize/(sqrt(2* pi)*sigma_j)*exp(-1/2* ((cutoff-mu_j)./sigma j).*2);
% will properly scale the height of the pdf

% fyj=1/(sart(2* pi)*sigmaj)*exp(-1/2* ((y-muj)/sigmaj)."2);

% Plot using ax1 handle, saved above,to save this graph

% on top of the previous graph.

v=axis,

hi=line(y_j,fy_j ,'Color','r','Parent’,ax1);

set(hl,linestyle',--",'color’,'r', linewidth',2)

h1=line([cutoff cutoff]',[O fy_cutoff]','Color','b’, Parent’,ax1);
set(hl,linestyle,-."'color','b', linewidth’,3)

h2=line([cutoff cutoff]',[fy_cutoff v(4)]','Color','b",'Parent’,ax1);
set(h2,'linestyl€,-.",'color','b', linewidth’,3)

s=sprintf('Case Study 14.2.2, %2.0f samples untransformed',n);
title(s,'FontSize',22)

figure(gcf);pause

14.2.2 Using the Sign Test for Paired Data (p. 807)

Case Study 14.2.3
% LMcs140203_4th.m
% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% page 807. A case study solved by the sign test
% Written by Eugene.Gallagher@umb.edu 11/16/10 Revised 11/16/10, 3/1/11
%
D=[1513;12 8;12 12.5;14 12;13 12;13 12.5;13 12.5;12 14;12.5 12;12 11,
12.510];
[p,h,stats] = signtest(D(:,2),D(:,1),0.05,'method’,'exact’);
fprintf(\nThe sign test statistic is %4.1f with exact 1-tailed p=%6.49\n',stats.sign,p/2);
[p,h,stats] = signtest(D(:,2),D(:,1),'method’,'approximate);
fprintf('The sign test z=%5.3f with approximate 1-tailed p=%6.4g\n’,stats.zval,p/2);
% It isa l-tailed p test to the left since the expectation is that mean
% circulation time is reduced by 4 months of cyclandelate.
[H,P,CI,STATS] = ttest(D(:,2),D(:,1),0.05,'left);
fprintf('The t statistic was %05.3f with %2.0f df \n',STATS.tstat, STATS.df)
fprintf(‘'The paired t test 1-tailed p=%6.4g\n’,P);
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fprintf(...

"The mean circulation time = %4.2f secs with 95%% CI: [%4.2f %4.2f]\n’,...
mean(D(:,2)-D(:,1)), CI(1),CI(2));

[P,H,STATS] = signrank(D(:,2),D(:,1),"a pha’,0.05,'method','exact’);

fprintf(...

‘The sign rank test statistic is %4.1f with exact 1-tailed p=%6.4g\n’,...

STATS.signedrank,P/2);

[P,H,STATS] = signrank(D(:,2),D(:,1),'alpha’,0.05,'method','approximate’);

fprintf('The sign rank test approximate 1-tailed p=%6.4g for z=%6.4f\n',P/2,STATS.zva);

% Plot histogram and check for symmetry

binsize=.5; % Needed in order to properly scale the normal pdf
edges=-4:binsize:2.5;

% hist(D);

[N,BIN] = histc(D(;,2)-D(:,1),edges);

bar(edges,N, histc)

axig([-4.12.603.3)])

set(get(gca,'Children’),'FaceColor',[.8 .8 1]);

xlabel ("After-Before" Mean Circulation Time (secs)’, FontSize',20);
ylabel'Number of Cases,'FontSize',20);

ax1=gca;

set(ax1,'Ytick',[0:3],'Xtick',[-4:0.5:2.5])

figure(gcf);pause

% Superimpose the normal probability pdf on a histogram of differences.
% The normal probability equation is provided on p. 293

% Thisisfor mean O, and unit standard

% deviation. The more general equation (Legendre & Legendre, 1998 p. 147) is.
% f(y_j)=1/(sart(2* pi)*sigma._j)*exp(-1/2* ((y_j-mu_j)/sigma_j)"2);
[n.c]=size(D);

mu_j=mean(D(;,2)-D(:,1));

sigma _j=std(D(:,2)-D(:,1)); % sigmaj is the standard deviation; = 1 after Z transform
y j=-4.1:0.01:2.6;
fy_j=1/(sart(2*pi)*sigma_j)*exp(-1/2*((y_j-mu_j)./sigma._j).*2);
fy_j=n*binsize*fy j;

cutoff=0;

fy_cutoff=n*binsize/(sqrt(2* pi)*sigma_j)*exp(-1/2* ((cutoff-mu_j)./sigma j).*2);
% will properly scale the height of the pdf

% fyj=1/(sart(2* pi)*sigmaj)* exp(-1/2* ((y-muj)/sigmaj)."2);

% Plot using ax1 handle, saved above,to save this graph

% on top of the previous graph.

v=axis

hi=line(y_j,fy_j ,'Color',r','Parent’,ax1);

set(hl,linestyle',--",'color’,'r", linewidth',2)

h1=line([cutoff cutoff]’,[O fy_cutoff]’,'Color','b’, Parent’,ax1);
set(hl,linestyle,-.",'color','b', linewidth',3)
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h2=line([cutoff cutoff]',[fy_cutoff v(4)]',/Color','b','Parent’,ax1);
set(h2,'linestyl€,-.",'color','b', linewidth’,3)

s=sprintf('Case Study 14.2.2, %2.0f samples untransformed',n);
title(s,'FontSize',22)

figure(gcf);pause

Questions p 809-810
143 WILCOXONTESTS
14.3.1 Testing H,: u=p,

Theorem 14.3.1
14.3.2 Cdculating p,,(w)
14.3.3 Tables of the cdf, F,(w)

Case Study 14.3.1 Swell sharks
% LMcs140301_4th.m
% Case Study 14.3.1 from
% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% page 815. A case study using Wilcoxon signed rank test
% Written by Eugene.Gallagher@umb.edu 11/16/10 Revised 11/16/10, 3/1/11
%
D=[13.32 13.06 14.02 11.86 13.58 13.77 13.51 14.42 14.44 15.43];
expected=14.6;
[P,H,STATS] = signrank(D,expected,'al pha,0.05,'method','exact);
fprintf(...
\nThe signed rank test statistic is %4.1f with exact 2-tailed p=%6.4g\n’,...
STATS.signedrank,P);
[P,H,STATS] = signrank(D,expected,'al pha,0.05,'method’,'approximate);
fprintf('The signed rank test approximate 2-tailed p=%6.4g for z=%6.4f\n",P,STATS.zval);
[H,P,CI,STATS] = ttest(D,expected,0.05,'both’);
fprintf('The one-samplet test 2-tailed p=%6.4g\n'",P);
fprintf(...
‘The mean TL/HDI = %4.2f with 95%% CI: [%4.2f %4.2f]\n,...
mean(D), CI(1),CI(2));
[p,h,stats] = signtest(D,expected,0.05,'method’,'exact’);
fprintf('The sign test statistic is %4.1f with exact 2-tailed p=%6.4g\n',stats.sign,p);
[p,h,stats] = signtest(D,expected, method’,'approximate’);
fprintf('The sign test z=%5.3f with approximate 2-tailed p=%6.4g\n',stats.zval,p);

% Plot histogram and check for symmetry

binsize=0.25; % Needed in order to properly scale the normal pdf
edges=11:binsize:16;

% hist(D);

[N,BIN] = histc(D,edges);

bar(edges,N, histc)

axis([10.9 16.1 0 max(N)+0.2])
set(get(gca,'Children’),'FaceColor',[.8 .8 1]);
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xlabel ('TL/HDI','FontSize',20);

ylabel (Number of Cases,'FontSize',20);

ax1l=gcg;

set(ax1,'Ytick',[0:max(N)],Xtick',edges)

figure(gcf);pause

% Superimpose the normal probability pdf on a histogram of differences.
% The normal probability equation is provided on p. 293

% Thisisfor mean O, and unit standard

% deviation. The more general equation (Legendre & Legendre, 1998 p. 147) is.
% f(y_j)=L(sart(2*pi)*sigma._j)*exp(-1/2*((y_j-mu_j)/sigma_j)"2);
n=length(D);

mu_j=mean(D);

sigma_j=std(D); % sigmg] is the standard deviation; = 1 after Z transform
y_j=10.9:0.01:16.1;
fy_j=1/(sart(2*pi)*sigma._j)*exp(-1/2*((y_j-mu_j)./sigma _j)."2);
fy_j=n*binsize*fy j;

cutoff=expected;

fy_cutoff=n*binsize/(sqrt(2* pi)*sigma_j)*exp(-1/2* ((cutoff-mu_j)./sigma j).*2);
% will properly scale the height of the pdf

% fyj=1/(sart(2* pi)*sigmaj)*exp(-1/2* ((y-muj)/sigmaj)."2);

% Plot using ax1 handle, saved above,to save this graph

% on top of the previous graph.

v=axis,

hil=line(y_j,fy_j ,'Color',r','Parent’,ax1);

set(hl,linestyle',--','color’,'r', linewidth',2)

h1=line([cutoff cutoff]',[O fy_cutoff]','Color','b’,Parent’,ax1);
set(hl,linestyle,-.", 'color','b, linewidth',3)

h2=line([cutoff cutoff]',[fy_cutoff v(4)]','Color','b",'Parent’,ax1);
set(h2,'linestyl€,-.",'color','b', linewidth’,3)

s=sprintf('Case Study 14.3.1, %2.0f samples untransformed',n);
title(s,'FontSize',22)

figure(gcf);pause

Questions p 816-817

14.3.4 A large sample Wilcoxon signed rank test
Theorem 14.3.2
Theorem 14.3.3

Case Study 14.3.2 Heroine addiction

% LMcs140302_4th.m

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% page 819. A case study using Wilcoxon signed rank test

% Written by Eugene.Gall agher@umb.edu 11/16/10 Revised 12/12/10, 3/1/11
%

D=[51 53 43 36 55 55 39 43 45 27 21 26 22 43];

expected=28;

[P,H,STATS] = signrank(D,expected,'a pha,0.05,'method’,'exact’);


mailto:Eugene.Gallagher@umb.edu

EEOS 601
Prob. & Applied Statistics
Week 8, P. 33 of 47

fprintf(...
\nThe signed rank test statistic is %4.1f with exact 1-tailed p=%6.4g\n’,...
STATS.signedrank,P/2);
[P,H,STATS] = signrank(D,expected,'al pha,0.05,'method','approximate’);
fprintf('The signed rank test approximate 1-tailed p=%6.4g for z=%6.4f\n',P/2,STATS.zval);
[H,P,CI,.STATS] = ttest(D,expected,0.05,'right);
fprintf('The one-samplett test 1-tailed p=%6.49\n',P);
fprintf(...
"The mean Q Score = %4.2f with 95%% ClI: [%4.2f %4.2f]\n’....

mean(D), CI(1),CI(2));
[p,h,stats] = signtest(D,expected,0.05,'method’,'exact’);
fprintf('The sign test statistic is %4.1f with exact 1-tailed p=%6.4g\n’,stats.sign,p/2);
[p,h,stats] = signtest(D,expected,'method’,'approximate);
fprintf('The sign test z=%5.3f with approximate 1-tailed p=%6.4g\n',stats.zval,p/2);

% Plot histogram and check for symmetry

binsize=2; % Needed in order to properly scale the normal pdf
edges=20:binsize:56;

% hist(D);

[N,BIN] = histc(D,edges);

bar(edges,N, 'histc’)

axis([19.5 56.5 0 max(N)+0.2])

set(get(gca,'Children’),'FaceColor',[.8 .8 1]);

xlabel ('Q Score','FontSize',20);

ylabel ‘'Number of Cases,'FontSize',20);

ax1=gca;

set(ax1,"Ytick',[0:max(N)], Xtick',edges)

figure(gcf);pause

% Superimpose the normal probability pdf on a histogram of differences.
% The normal probability equation is provided on p. 293

% Thisisfor mean 0, and unit standard

% deviation. The more general equation (Legendre & Legendre, 1998 p. 147) is.
% f(y_j)=1/(sart(2* pi)*sigma._j)*exp(-1/2* ((y_j-mu_j)/sigma_j)"2);
n=length(D);

mu_j=mean(D);

sigma_j=std(D); % sigmq] is the standard deviation; = 1 after Z transform
y_j=19.5:0.01:56.5;

fy_j=1/(sart(2*pi)*sigma._j)*exp(-1/2*((y_j-mu_j) /sigma j)."2);
fy_j=n*binsize*fy j;

cutoff=expected;

fy_cutoff=n*binsize/(sgrt(2* pi)*sigma._j)*exp(-1/2* ((cutoff-mu_j)./sigma _j).*2);
% will properly scale the height of the pdf

% fyj=1/(sart(2* pi)*sigmaj)* exp(-1/2* ((y-muj)/sigmaj)."2);

% Plot using ax1 handle, saved above,to save this graph

% on top of the previous graph.
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v=axis

hl=line(y_j,fy_j ,'Color',r','Parent',ax1);

set(hl,linestyle',--",'color’,'r', linewidth',2)

h1=line([cutoff cutoff]’,[O fy_cutoff]’,'Color','b’, Parent’,ax1);

set(hl,linestyle,-.",'color','b', linewidth',3)

h2=line([cutoff cutoff]',[fy_cutoff v(4)]',/Color','b','Parent’,ax1);

set(h2,'linestyl€,-.",'color','b', linewidth',3)

s=sprintf('Case Study 14.3.2, %2.0f samples untransformed',n);

title(s,'FontSize',22)

figure(gcf);pause

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition

% page 819. A case study using Wilcoxon signed rank test

% Written by Eugene.Gallagher@umb.edu 11/16/10 Revised 12/12/10

%

D=[51 53 43 36 55 55 39 43 45 27 21 26 22 43];

hist(D-28);figure(gcf); pause

hist(log(D)-log(28));figure(gcf); pause

M=28;

[H,P,CI,STATS] = ttest(D,M,0.05,right’);

fprintf(\nThe paired t test 1-tailed p=%6.4g\n',P);

fprintf(‘'The mean Q score = %4.2f with 95%% CI: [%04.2f %4.2f]\n,...
mean(D), CI(2),CI(2));

[H,P,CI,STATS] = ttest(log(D),log(M),0.05,right’);

fprintf(\nThe paired t test of log transform 1-tailed p=%6.4g\n’,P);

[p,h,stats] = signtest(D,M,0.05,'method','exact’);

fprintf('The sign test exact 1-tailed p=%6.49\n',p/2);

[p,h,stats] = signtest(D,M,'method’,'approximate’);

fprintf('The sign test approximate 1-tailed p=%6.49\n',p/2);

[P,H,STATS] = sgnrank(D,M,'alpha,0.05,'method’,'exact’);

fprintf(‘'The sign rank test exact 1-tailed p=%6.4g\n',P/2);

[P,H,STATS] = signrank(D,M,'alpha,0.05,'method’,'approximate’);

fprintf('The sign rank test approximate 1-tailed p=%6.4g\n',P/2);

14.3.5 Testing H,: 4 = 0 (Paired data)

Case Study 14.3.3
% LMcs140303_4th.m
% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% page 821. A case study solved by the sign and Wilcoxon signed rank
% test
% Written by Eugene.Gallagher@umb.edu 11/16/10 Revised 3/1/11
%
D=[4.67 4.36;3.5 3.64;3.5 4,3.88 3.26;3.94 4.06;4.88 4.58;4 3.52
4.4 3.66;4.41 4.43,4.11 4.28;3.45 4.25;4.29 4,4.25 5;4.18 3.85
4.654.18];
expected=0;
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[P,H,STATS] = signrank(D(:,1),D(:,2),'dpha,0.05,'method','exact’);

fprintf(...

\nThe signed rank test statistic is %4.1f with exact 2-tailed p=%6.4g\n’,...

STATS.signedrank,P);

[P,H,STATS] = signrank(D(:,1),D(:,2),'a pha’,0.05,'method','approximate’);

fprintf('The signed rank test approximate 2-tailed p=%6.4g for z=%6.4f\n",P,STATS.zval);

[H,P,CI,STATS] = ttest(D(:,1),D(:,2),0.05,'both’);

fprintf(‘'The paired t test 2-tailed p=%6.4g\n',P);

fprintf(...

"The mean difference in ratings (In-Class - Online) = %4.2f with 95%% CI: [%4.2f %4.2f]\n’,...
mean(D(:,1)-D(:,2)), CI(1),CI(2));

[p,h,stats] = signtest(D(:,1),D(:,2),0.05,'method’,'exact");

fprintf('The sign test statistic is %4.1f with exact 2-tailed p=%6.4g\n',stats.sign,p);

[p,h,stats] = signtest(D(:,1),D(:,2),'method’,'approximate);

fprintf('The sign test z=%5.3f with approximate 2-tailed p=%6.49\n',stats.zval,p);

% Plot histogram and check for symmetry

binsize=.2; % Needed in order to properly scale the normal pdf
edges=-.8:hinsize..8;

% hist(D);

[N,BIN] = histc(D(;,1)-D(:,2),edges);

bar(edges,N, 'histc’)

axis([-.82 .82 0 max(N)+0.2])

set(get(gca,'Children’),'FaceColor',[.8 .8 1]);

xlabel (‘Difference in evaluations, In-Class - Online,'FontSize',20);
ylabel'Number of Cases,'FontSize',20);

ax1=gca;

set(ax1,"Ytick',[0:max(N)], Xtick',edges)

figure(gcef); pause

% Superimpose the normal probability pdf on a histogram of differences.

% The normal probability equation is provided on p. 293

% Thisisfor mean 0, and unit standard

% deviation. The more general equation (Legendre & Legendre, 1998 p. 147) is.
% f(y_j)=1/(sart(2*pi)*sigma._j)*exp(-1/2* ((y_j-mu_j)/sigma_j)"2);
n=length(D(:,1)-D(;,2));

mu_j=mean(D(;,1)-D(:,2));

sigma_j=std(D(:,1)-D(:,2)); % sigmaj is the standard deviation; = 1 after Z transform
y j=-.82:0.01:.82;
fy_j=1/(sart(2*pi)*sigma._j)*exp(-1/2*((y_j-mu_j)./sigma._j)."2);
fy_j=n*binsize*fy j;

cutoff=expected;

fy_cutoff=n*binsize/(sgrt(2*pi)*sigma._j)* exp(-1/2* ((cutoff-mu_j)./sigma j)."2);
% will properly scale the height of the pdf

% fyj=1/(sart(2* pi)*sigmaj)* exp(-1/2* ((y-muj)/sigmaj)."2);

% Plot using ax1 handle, saved above,to save this graph
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% on top of the previous graph.

vV=axis;

hl=line(y_j,fy_j ,'Color','r','Parent’,ax1);
set(hl,linestyle',--",'color’,'r', linewidth',2)

h1=line([cutoff cutoff]',[O fy_cutoff]’,'Color','b’, Parent’,ax1);
set(hl,linestyle,-."'color','b', linewidth’,3)

h2=line([cutoff cutoff]',[fy_cutoff v(4)]',/Color','b','Parent’,ax1);
set(h2,'linestyl€,-.",'color','b', linewidth',3)

s=sprintf('Case Study 14.3.3, %2.0f samples untransformed',n);
title(s,'FontSize',22)

figure(gcf);pause

14.3.6 Testing H,: py = My (The Wilcoxon Rank Sum Test)
Theorem 14.3.4

Case Study 14.34

% LMcs140304_4th.m

% Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th edition
% Written by Eugene.Gall agher@umb.edu; written 11/16/10; revised 11/23/10
% Calls Matlab's ranksum.m and Gallagher's Wilcoxranksum.m

AL=[177 177 165 172 172 179 163 175 166 182 177 168 179 177]';
NL=[166 154 159 168 174 174 177 167 165 161 164 161]";
boxplot([AL;NL],[ones(length(AL),1);zeros(length(NL),1)]);figure(gcf)
[P,H,STATS] = ranksum(AL,NL,'alpha,0.05,'method','exact’);
fprintf(...
\n\nUsing Matlab"s ranksum, exact p=%6.4f, Rank sum = %4.1f\n',P,...
STATS.ranksum)
if H==1
fprintf('Reject Ho\n\n')
else
fprintf('Fail to reject Ho\n\n')
end
[pvalue,W,U]=Wilcoxranksum(AL,NL,1);
fprintf('Using Gallagher"s Wilcoxranksum, exact p=%6.4f;\n’, P)
fprintf(‘Wilcoxon"s W = %4.1f; Mann-Whitney U=%4.1f;\n’,W,U)
[P,H,STATS] = ranksum(AL,NL,'apha,0.05,'method’,' approximate’);
fprintf(\nUsing Matlab"s ranksum, large sample p=%6.4f;\n’,P)
fprintf('Rank sum = %4.1f; z-value=%"5.2f\n",STATS.ranksum,STATS.zval)
if H==1
fprintf('Reject Ho\n\n')
else
fprintf('Fail to reject Ho\n\n')
end
[pvalue,W,U,Wstar]=Wilcoxranksum(AL,NL,0);
fprintf('Using Gallagher"s Wilcoxranksum, large sample p=%6.4f;\n',P)
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fprintf(‘Wilcoxon"s W = %4.1f; Mann-Whitney U=%4.1f; z-value=%5.2f\n,...
W,U,Wstar)

function [pvalue,W,U,Wstar]|=Wilcoxranksum(X,Y ,Ex)

% Wilcoxon rank-sum test

% [pvalue,W,U,Wstar]=Wilcoxranksum(X,Y ,Ex)

% Teststhe null hypothesisthat X & Y have the same pdf.

% Input: X,Y two samples,Ex~=0 indicates do an exact test.

% Output: pvalue: pvalue, 2-sided p value for large sample approximation N(0,1) distribution
% W=Wilcoxon rank sum statistic

% U=Mann-Whitney U statistic

% Wstar=z value for asymptotic large sample approximation
% Calls Wilcoxrsexact

% Written by Eugene.Gall agher@umb.edu

% Revised 11/14/10

X=X();Y=Y();
n=length(X);
m=length(Y);
% Rank the X&Y values from smallest to largest, assigning average ranksto ties.
[T,R,ind]=ties([X;Y]); T=T"; % calls Gallagher'stiesm
% Find sum of ranks of the smaller sample;
if n<m;
W=sum(R(1:n));
else
W=sum(R(n+1:n+m));
n=m; % Expected value & variance equastions assume n is the size of the smaller group.
m=length(X);
end
U=W-n*(n+1)/2; % Mann-Whitney U datistic
largesample=logical(1);
if nargin>2
if Ex~=0
largesample=logical (0);
end
end
if nargin>2 & ~largesample
ncomb=nchoosek(n+m,n);
if ncomb>1e6
t=sprintf(...
'%d combinations, T=%d min (1e6 combs take 1 min on p4)\n,...
ncomb,round(ncomb/1e6));
toomany=menu(t,'Stop','Continue’);
if toomany==1
largesample=logical (1);fprintf('Large sample approximation for 2-tailed p\n");
end
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end
if ~largesample
pexuptail=wilcoxrsexact(n,m,W,R);
if pexuptail<=0.5
pvalue=2* pexuptail;
else
pvalue=2* (1-pexuptail);
end
end
end
if largesample
% Large sample approximation;% Hollander & Wolfe p. 108
EoW=(n*(m+n+1))/2;
% Calculate the variance of W, without ties and with ties.
if isempty(T) % Size of tied groups from ties.m
VaroW=(m*n*(m+n+1))/12;
else
VaroW=(m*n)/12* (m+n+1-(sum((T-1).*T.*(T+1)))/((m+n)* (m+n-1)));
end
Wstar=(W-(n* (m+n+1)/2))/sgrt(VaroW); % Without ties, tends to an asymptotic N(0,1)
distribution.
% Find the 2-tailedprobability of Wstar from the standard normal distributioin
pvalue=erfc(abs(Wstar)/sgrt(2));
% Note that the exact p values are tabulated, and an exact test, even in the presence of ties
% can be performed, see pp. 113-116 in Hollander & Wolfe.
end

function pexuptail=Wilcoxr sexact(n,m,W,ranks);

% Exact upper tail p valuesfor Wilcoxon Rank Sum statistic
% function pexuptai [=Wilcoxrsexact(n,m,W,ranks);

% Borrows shamelesdy from Strausss combvals.m

% Note that Matlab's nchoosek will also generate the list

% of combinations. This program doesn't generate the full

% matrix of combinations, but calculates the test stat only.

% Input: n size of smaller group

% m size of larger group

% W Wilcoxon signed rank statistic

% ranks, actual ranks of n+mitemsif there are ties present.
% Written by E. Gallagher, Eugene.Gallagher@umb.edu

% Help file for Strauss combvals:

% COMBVALS: Generates the combinations of nintegerstakenr at atime. The

% number of such combinationsis given by function nc=combin().
% Usage: ¢c = combvals(n,r)
% n = number of integers (1:n) to be combined.

% r = number to be taken at atime (0 <r <=n).
%
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% ¢ =[nc x r] matrix of combinations.

% Based on ACM Algorithm 94, J. Kurtzberg, Comm. ACM, June 1962.
% RE Strauss, 12/18/98

% An exact conditional distribution with ties follows Hollander & Wolfe p. 115
if nargin<4
ranks=1:n+m;
notiedr=logical (1);
else
if length(ranks)<n+m
error(...
sprintf(...
‘Number of ranks (%d) doesn"t match n+m (%d)\n',...
length(ranks),n+m));
end
ranks=sort(ranks);
notiedr=logical (0); % could do a check to seeif there really are tieswith tiesm
end
ranks=ranks(:);
fudranks=flipud(ranks);
N=n+m;
r=n;
ncomb = nchoosek(N,r); % Matlab's built-in combination function.
if W>=n*(n+m+1)-W,
uppertail=logical (1);
else
W=n*(n+m+1)-W;
uppertail=logical (0);
end
if W>sum(fudranks(1:n))
if uppertail
error('W impossibly large’)
else
error('W impossibly small’)
end
elseif W==sum(fudranks(1:n)) & notiedr
if uppertail
pexuptail=1/ncomb;
else
pexuptail=(ncomb-1)/ncomb;
end
return
end
% Strausss combval lists combinationsin c in lexicographic
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% order, thus the critical valuesfor sum(C) are larger than
% observed W. We can speed up the process by using
% Wstar=min(W,n* (m+n+1)-W) and exiting loop when Wstar fails
% to be less than critical value
if ncomb>1e6
t=sprintf(...
'%d combinations, T=%d min (1e6 combs take 1 min on p4)\n,...
ncomb,round(ncomb/1e6));
toomany=menu(t,'Stop','Continue’);
if toomany==1
return
end
end
% c = zeros(ncomb,r); % Don't need to store values.
Tally=0;
] = zeros(1,r);

for i = 1:ncomb
b=1;
endflag = 0;
while(~endflag)
if (j(b)>=b)
a=j(b)-b-1;
forl=1b
j() =+
end;
endflag = 1;
else
if (b==r)
forb=1r
j(b) = N-r-1+b;
end;
endflag = 1;
end;
b=Db+1;

% c(i,:) = N-j(r:-1:1);

c=N-j(r:-1:1);

if sum(ranks(c))>=W

Tally=Tally+1;

end
end;
pexuptail=Tally/ncomb;
if ~uppertail
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pexuptail=1-pexuptail;
end

function [T,R,ind]=ties(A)

% format: [T,R,ind]=ties(A)

% afunction to return arow vector of tied groups, T,

% Ranks R (including average ranks) and indices of tied elements
% needed to calculate variance of Susing Kendall's

% variance formula & Spearman'sr.

% input: A isarow or column vector

% T: arow vector containing number of members of tied groups
% T=0 if there are no tied groups

% sum(T) is equal to the number of tied elements.

% each element of T equals the number in each tied group

% tied groups are sorted in ascending order.

% Examples: A=[1 2 3];[T,R,ind]=ties(A)=> T=0,R=[1 2 3],ind=[]

% A=[1231]; T=2,R=[1.53 4 1.5],ind=[1 4]

% A=[212312]; T=[23],R=[41546154],

% ind=[52 31 6]

% A=[2123312]; T=[232],R=[41546.56.5154]
% ind=[6231745]

% R (Row vec)=numerical rankings of A with ave. ranksfor ties
% ind: indices of tied elements, sorted by rank; sorted tied elements=A(ind);
% tiesmisused in Kendall.m as T=ties(A), and Spear.m
% written by E. Gallagher, Environmental Sciences Program
% UMASS/Boston, Email: Eugene.Gallagher@umb.edu
% written: 6/16/93, revised 6/17/93
[r.c]=size(A);
if r>c
A=A % change to row vector
end
[Asort,K]=sort(A);
iota=1:length(A);iota=iota;;
R(k)=iota;
index=[k' iota];
ind=[];
CDA=[~diff(Asort) 0];
minl=min(find(CDA==1));
if isempty(minl)
T=0;
return
end
i=0;
[rw,cl]=size(CDA);
T=zeros(size(rw,cl));
while ~isempty(minl)
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minO=min(find(CDA==0));
if minO<minl
CDA(min0:minl1-1)=[];
index(minO:minl-1,:)=[];
else
i=i+1,
T(i1)=min0O-minl+1;
CDA(min1:min0)=[];
ind=[ind index(min1:min0,1)";
R(1,index(minl:min0))=ones(1, T(i))* sum(index(minl:min0,2))/T(i);
index(minl:min0,:)=[];
end
minl=min(find(CDA==1));
end
T(find(T==0))=[];

Questions p 825-826
144 The KRUSKAL-WALLISTEST
Theorem 14.4.1

Case Study 14.4.1 Draft lottery

% LMcs140401_4th.m

% Case Study 14.4.1

% 1969 draft lottery

% From Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th ed
% Written by Eugene.Gall agher@umb.edu 12/7/2010
% Are the data random?

DATA=[1 305 086 108 032 330 249 093 111 225 359 019 129
2 159 144 029 271 298 228 350 045 161 125 034 328
3251 297 267 083 040 301 115 261 049 244 348 157
4215210 275 081 276 020 279 145 232 202 266 165
5101 214 293 269 364 028 188 054 082 024 310 056
6 224 347 139 253 155 110 327 114 006 087 076 010
7 306 091 122 147 035 085 050 168 008 234 051 012
8199 181 213 312 321 366 013 048 184 283 097 105
9194 338 317 219 197 335 277 106 263 342 080 043
10 325 216 323 218 065 206 284 021 071 220 282 041
11 329 150 136 014 037 134 248 324 158 237 046 039
12 221 068 300 346 133 272 015 142 242 072 066 314
13 318 152 259 124 295 069 042 307 175 138 126 163
14 238 004 354 231 178 356 331 198 001 294 127 026
15017 089 169 273 130 180 322 102 113 171 131 320
16 121 212 166 148 055 274 120 044 207 254 107 096
17 235189 033 260 112 073 098 154 255 288 143 304
18 140 292 332 090 278 341 190 141 246 005 146 128
19 058 025 200 336 075 104 227 311 177 241 203 240
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20 280 302 239 345 183 360 187 344 063 192 185 135

21 186 363 334 062 250 060 027 291 204 243 156 070

22 337 290 265 316 326 247 153 339 160 117 009 053

23118 057 256 252 319 109 172 116 119 201 182 162

24 059 236 258 002 031 358 023 036 195 196 230 095

25052 179 343 351 361 137 067 286 149 176 132 084

26 092 365 170 340 357 022 303 245 018 007 309 173

27 355 205 268 074 296 064 289 352 233 264 047 078

28 077 299 223 262 308 222 088 167 257 094 281 123

29 349 285 362 191 226 353 270 061 151 229 099 016

30 164 NaN 217 208 103 209 287 333 315 038 174 003

31211 NaN 030 NaN 313 NaN 193 011 NaN 079 NaN 100];
DATA=DATA(;,2:13);

y=DATAC(:); % convert the datainto columns; drop the NaN elements
group=repmat(1:12,31,1);group=group(:);i=~isnan(y);y=y(i);group=group(i);
[p.table,stats] = kruskalwallis(y,group)

multcompare(stats)

% As described on page 829, test the 1st vs. 2nd 6 months.
g=group;g(group<=6)=1;9(group>6)=2;

[p2,table2,stats?] = kruskalwallis(y,q)

Questions p 830-832
145 THE FRIEDMAN TEST
Theorem 14.5.1

Case Study 14.5.1
% LMcs140501_4th.m
% Case Study 14.5.1
% Base running example from Hollander & Wolfe
% From Larsen & Marx (2006) Introduction to Mathematical Statistics, 4th ed
% Written by Eugene.Gallagher@umb.edu 12/7/2010
%
DATA=[5.55.55

5.75.75

5655

5554

5.855.7

5.555.6

5.45.35

555.35

5155

5.85.7

525.1

5.555.45

5.355.45

54.95

5554


mailto:Eugene.Gallagher@umb.edu

EEOS 601
Prob. & Applied Statistics
Week 8, P. 44 of 47

55555

5.555.35

555.55

5.455.25

5654

5.65 5.55

6.3 6.25];
plot(DATAY);
ax1=gca;
set(ax1,'Xtick',[1 2])
set(ax1,’XtickLabel' {'Narrow-Angle',Wide-Angl€e’})

figure(gcf);pause
[P, TABLE,STATS]=friedman(DATA);

146 TESTING FOR RANDOMNESS

Case Study 14.6.1
% LMcs140601_4th.m
% Uses the resampling toolbox function runs.m
DATA=...
[61 53 58 51 52 34 45 52 46 52 37 39 50 38 55 59 57 64 73 46 48 47 40 35 40]";
n=length(DATA);
[H,P,STATS|=runstest(diff(DATA)>0); % Thisis not the same runs test a
% Larsen and Marx. Matlab's runs test
% considers the number of positive and
% negative runs, but L& M'stest just
% considersthetotal N (25) in
% calculating its test statistic. Thus,
% L&M’'stest assumes no trend.
% Theorem 14.6.1:
EW=(2*n-1)/3;
VarW=(16*n-29)/90;
Z=(STATS.nruns-EW)/sgrt(Varw)
if Z>0
p=1-normcdf(2);
else
p=normcdf(2);
end
fprintf(...
'With Matlab"s runs test, P(%2.0f runs with %2.0f cases) is %5.3f\n’,...
STATS.nruns,n,P)
fprintf(...
'With Larsen & Marx"sruns test P(%2.0f runs with %2.0f cases) = %5.3f\n,...
STATS.nruns,n,p)
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% Although undocumented, Matlab is probably using the Wald-Wolfowitz runs
% test; When | can get access to my stats books with the exact version
% of thetest, I'll check.

Questions p. 838-841
14.7 Taking asecond look at statistics (comparing parametric and nonparametric
procedures
Appendix 14.A.1 Minitab applications
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